To solve the problem of finding the quadratic function (f(x)) given the conditions (f(0)=1) and (f(x+1)-f(x)=2x), follow these steps:
Since (f(x)) is quadratic, let:
[f(x) = ax^2 + bx + c \quad (a \neq 0)]
Substitute (x=0):
[f(0) = a(0)^2 + b(0) + c = c = 1]
Thus, (c=1).
First, expand (f(x+1)):
[f(x+1) = a(x+1)^2 + b(x+1) + c = a(x^2 +2x+1) +b(x+1)+1]
[= ax^2 +2ax +a +bx +b +1]
Subtract (f(x)):
[f(x+1)-f(x) = [ax^2 +2ax +a +bx +b +1] - [ax^2 +bx +1]]
[=2ax + (a +b)]
Given this equals (2x), equate coefficients:
Substitute (a=1), (b=-1), (c=1):
[f(x) = x^2 -x +1]
Answer: (\boxed{x^2 -x +1})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買(mǎi)、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。