To solve the problem of finding the minimum value of (\frac{1}{a} + \frac{4}) given (a > 0), (b > 0), and (a + b = 1), we can use the AM-GM inequality as follows:
Since (a + b = 1), we rewrite the expression by multiplying it with (a + b):
[
\left(\frac{1}{a} + \frac{4}\right)(a + b) = 1 + \frac{a} + \frac{4a} + 4 = 5 + \frac{a} + \frac{4a}
]
For positive numbers (\frac{a}) and (\frac{4a}):
[
\frac{a} + \frac{4a} \geq 2\sqrt{\frac{a} \cdot \frac{4a}} = 2 \times 2 = 4
]
Equality holds when (\frac{a} = \frac{4a}), i.e., (b = 2a).
Substitute back into the expression:
[
5 + \frac{a} + \frac{4a} \geq 5 + 4 = 9
]
When equality holds: (a + b = 1) and (b = 2a), so (a = \frac{1}{3}), (b = \frac{2}{3}), and (\frac{1}{a} + \frac{4} = 3 + 6 = 9).
Answer: (\boxed{9})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。