To determine the answer, let’s analyze the problem with a counterexample:
The problem likely asks whether all eigenvectors of a 2x2 matrix are multiples of a single vector if the matrix has at least one eigenvector.
An eigenvector (v) satisfies (Av = \lambda v) for some scalar (\lambda). However, matrices can have multiple linearly independent eigenvectors.
Consider the diagonal matrix (A = \begin{bmatrix}2 & 0 \ 0 & 3\end{bmatrix}):
These eigenvectors are not multiples of each other.
Conclusion: The statement is false.
Answer: B. False.
(\boxed{B})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。