To solve the problem, we start by noting that (a) and (b) are multiples of 3. This means we can express them as:
(a = 3k) and (b = 3m) (where (k) and (m) are integers).
Substitute (a = 3k) and (b = 3m) into the expression:
[
a^2 + b^2 = (3k)^2 + (3m)^2 = 9k^2 + 9m^2 = 9(k^2 + m^2)
]
The expression (9(k^2 + m^2)) can be rewritten as (3 \times [3(k^2 + m^2)]), which is clearly a multiple of 3.
When a multiple of 3 is divided by 3, the remainder is 0.
Answer: (\boxed{0})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。