亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年質(zhì)量好的注塑水電氣自動(dòng)供料/整體水電氣自動(dòng)供料實(shí)力廠家綜合評(píng)估推薦幾家
2026-02-10 07:21:40

To solve the problem of finding the maximum value of (P = \frac{ab}{1 - c} + \frac{bc}{1 - a} + \frac{ca}{1 - b}) where (a, b, c > 0) and (a + b + c = 1), follow these steps:

Key Observations:

Since (a + b + c = 1), we have (1 - c = a + b), (1 - a = b + c), (1 - b = c + a). Thus: [P = \frac{ab}{a + b} + \frac{bc}{b + c} + \frac{ca}{c + a}]

Inequality Application:

For any positive (x, y), (\frac{xy}{x + y} \leq \frac{x + y}{4}) (since (xy \leq \frac{(x + y)^2}{4}), dividing both sides by (x + y) gives this).

Summing the Inequalities:

[ \sum{cyc} \frac{ab}{a + b} \leq \sum{cyc} \frac{a + b}{4} ] [ = \frac{(a + b) + (b + c) + (c + a)}{4} ] [ = \frac{2(a + b + c)}{4} = \frac{2 \times 1}{4} = \frac{1}{2}]

Equality Condition:

Equality holds when (a = b = c) (since (\frac{xy}{x + y} = \frac{x + y}{4}) iff (x = y)). Thus (a = b = c = \frac{1}{3}).

Answer: (\boxed{\dfrac{1}{2}})



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

點(diǎn)擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?