To solve the problem, we use key formulas related to rectangular prisms:
Let (l), (w), (h) be the length, width, height of the prism.
Given:
From surface area:
(2(lw + lh + wh) = 80 \implies lw + lh + wh = 40)
Using the identity:
((l + w + h)^2 = l^2 + w^2 + h^2 + 2(lw + lh + wh))
Substitute values:
(12^2 = l^2 + w^2 + h^2 + 2(40))
(144 = l^2 + w^2 + h^2 + 80)
(l^2 + w^2 + h^2 = 144 - 80 = 64)
Space diagonal (d = \sqrt{l^2 + w^2 + h^2} = \sqrt{64} = 8) cm
Answer: (\boxed{8}) cm. (Assuming the surface area was 80 cm2 instead of 160 cm2, as the original value is impossible.)
(\boxed{8})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。