To solve the problem of finding the number of non-negative integer solutions to the equation (x_1 + x_2 + ... + x_n = k) where each (x_i \leq m), we use the stars and bars method combined with the inclusion-exclusion principle. Here's the step-by-step solution:
Without the upper bound (x_i \leq m), the number of non-negative integer solutions is given by the stars and bars formula:
[ \binom{k + n -1}{n-1} ]
where (\binom{a}) denotes the combination of (a) items taken (b) at a time.
We need to exclude solutions where at least one (x_i > m). Let (A_i) be the set of solutions where (x_i > m).
For a set (A_i):
For overlapping sets (A{i1} \cap ... \cap A{it}) (t variables exceed (m)):
Using inclusion-exclusion, the number of valid solutions is:
[ \sum_{t=0}^s (-1)^t \binom{n}{t} \binom{k - t(m+1) + n -1}{n-1} ]
Where:
For (n=3, m=2, k=5):
Valid solutions: (21 - 18 =3) (matches the permutations of ((2,2,1))).
Answer:
The number of solutions is:
[ \boxed{\sum_{t=0}^{\min\left(n, \left\lfloor \frac{k}{m+1} \right\rfloor\right)} (-1)^t \binom{n}{t} \binom{k - t(m+1) + n -1}{n-1}} ]
Or, if you need a concrete expression (depending on values of (n,k,m)), substitute the variables into the sum. For example, if (k \leq m), the sum reduces to (\binom{k+n-1}{n-1}).
For general cases, this sum is the standard result for bounded stars and bars.
(\boxed{\sum_{t=0}^s (-1)^t \binom{n}{t} \binom{k - t(m+1) + n -1}{n-1}}) (with (s) as defined above).
If you want to write it concisely (assuming the sum is computed correctly), this is the final answer.
(\boxed{\sum_{t=0}^{\min\left(n, \left\lfloor \frac{k}{m+1} \right\rfloor\right)} (-1)^t \binom{n}{t} \binom{k - t(m+1) + n -1}{n-1}})
(免責聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責任歸材料提供方所有和承擔。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風險自擔。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。