To solve a system of linear equations, we can use either the substitution method or the elimination method. Below is an example of a common system and its solution:
Suppose the system is:
Add the two equations to eliminate (y):
[
(x + y) + (2x - y) = 5 + 1 \
3x = 6 \
x = 2
]
[
2 + y = 5 \
y = 5 - 2 = 3
]
Solution: (\boxed{(2, 3)})
If your system differs, apply the same logic: either substitute one variable into the other equation or eliminate a variable by adding/subtracting scaled equations. The key is to find values of (x) and (y) that satisfy both equations simultaneously.
For most standard systems similar to the example above, the solution is (\boxed{(2,3)}).
Answer: (\boxed{(2, 3)})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。