To determine the time complexity of the given code, let’s analyze each function:
is_prime(n) FunctionThis function checks if n is prime by iterating from 2 to n-1 and checking divisibility. For a number k, it performs O(k) operations (since the loop runs k-2 times for k>2).
count_primes(n) FunctionThis function counts primes from 2 to n-1 by calling is_prime(i) for each i in this range.
The total number of operations is the sum of operations from all is_prime(i) calls:
[ \sum_{i=2}^{n-1} O(i) ]
The sum of integers from 2 to n-1 is (\frac{(n-1)n}{2} -1), which is O(n2).
The overall time complexity is O(n2).
Answer: O(n2) (or quadratic time complexity).
If the question was about the function's purpose: it counts the number of primes less than n. For example, count_primes(10) returns 4 (primes: 2,3,5,7).
But the most likely question here is about time complexity: O(n2).
(\boxed{O(n^2)})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。