To solve the problem, we follow these steps:
The desired area is the sum of three segments from (D_A), (D_B), and (C):
Segment from (D_A) (arc (PQ), center (A)):
Sector angle (\pi/3), segment area (\frac{\pi}{6}-\frac{\sqrt{3}}{4}).
Segment from (D_B) (arc (RP), center (B)):
Same as above: (\frac{\pi}{6}-\frac{\sqrt{3}}{4}).
Segment from (C) (arc (QR), center (O)):
Sector angle (\pi/6), segment area (\frac{\pi}{12}-\frac{1}{4}).
Total area = ((\frac{\pi}{6}-\frac{\sqrt{3}}{4}) + (\frac{\pi}{6}-\frac{\sqrt{3}}{4}) + (\frac{\pi}{12}-\frac{1}{4}))
Simplify:
[=\frac{5\pi}{12} - \frac{2\sqrt{3}+1}{4}]
Answer: (\boxed{\frac{5\pi}{12} - \frac{2\sqrt{3}+1}{4}}) (or equivalent form)
But often written as (\boxed{\frac{5\pi}{12} - \frac{\sqrt{3}}{2} - \frac{1}{4}})
Final answer in boxed form: (\boxed{\frac{5\pi}{12} - \frac{2\sqrt{3} + 1}{4}})
(\boxed{\frac{5\pi}{12} - \frac{2\sqrt{3} + 1}{4}})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。