To solve the problem of finding the number of distinct ways to paint a cube with (m) colors where adjacent faces have different colors (up to rotation), we use combinatorial arguments and known results from group theory (Burnside's lemma) for cube rotations.
The cube's rotation group has 24 elements, but most rotations do not fix valid colorings (adjacent faces different). The valid colorings are those where opposite faces can share colors, but adjacent faces cannot. The formula for distinct colorings (up to rotation) is derived from counting valid configurations and accounting for rotational symmetry.
The number of distinct ways to paint the cube is: [ \boxed{m(m-1)(m^2 -3m +3)} ]
Explanation:
This formula accounts for all valid colorings and removes duplicates due to cube rotations.
Answer: (\boxed{m(m-1)(m^2 - 3m + 3)})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。