To solve the problem, let's assume the common setup where we have the equations:
Given:
(a + \frac{1} = 1) and (b + \frac{1}{c} = 1)
Find: (c + \frac{1}{a})
From (a + \frac{1} = 1):
(a = 1 - \frac{1} = \frac{b - 1})
Thus, (\frac{1}{a} = \frac{b - 1})
From (b + \frac{1}{c} = 1):
(\frac{1}{c} = 1 - b)
Thus, (c = \frac{1}{1 - b})
(c + \frac{1}{a} = \frac{1}{1 - b} + \frac{b - 1})
Rewrite (\frac{b - 1}) as (-\frac{1 - b}):
(= \frac{1}{1 - b} - \frac{1 - b})
Combine terms:
(= \frac{1 - b}{1 - b} = 1)
Answer: (\boxed{1})
If the problem refers to (\abc) (another common variant), the answer would be (-1). But based on typical questions, the most likely answer is 1.
(\boxed{1})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。