亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年評價高的云南泡沫包裝箱/泡沫包裝箱哪家靠譜可靠供應(yīng)商參考
2026-02-11 11:14:21

To solve the problem, let's assume the common setup where we have the equations:

Given:
(a + \frac{1} = 1) and (b + \frac{1}{c} = 1)

Find: (c + \frac{1}{a})

Step 1: Express (a) in terms of (b)

From (a + \frac{1} = 1):
(a = 1 - \frac{1} = \frac{b - 1})

Thus, (\frac{1}{a} = \frac{b - 1})

Step 2: Express (c) in terms of (b)

From (b + \frac{1}{c} = 1):
(\frac{1}{c} = 1 - b)

Thus, (c = \frac{1}{1 - b})

Step 3: Calculate (c + \frac{1}{a})

(c + \frac{1}{a} = \frac{1}{1 - b} + \frac{b - 1})

Rewrite (\frac{b - 1}) as (-\frac{1 - b}):
(= \frac{1}{1 - b} - \frac{1 - b})

Combine terms:
(= \frac{1 - b}{1 - b} = 1)

Answer: (\boxed{1})

If the problem refers to (\abc) (another common variant), the answer would be (-1). But based on typical questions, the most likely answer is 1.

(\boxed{1})



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。

在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?