To find the length of the altitude to the hypotenuse in the given right triangle (sides 5,12,13), follow these steps:
The area of a right triangle can be calculated in two ways:
Using the legs as base and height:
[ \text{Area} = \frac{1}{2} \times \text{leg}_1 \times \text{leg}_2 = \frac{1}{2} \times 5 \times 12 = 30 ]
Using the hypotenuse and its altitude ((h)):
[ \text{Area} = \frac{1}{2} \times \text{hypotenuse} \times h = \frac{1}{2} \times 13 \times h ]
[ \frac{1}{2} \times 13 \times h = 30 ]
[ 13h = 60 ]
[ h = \frac{60}{13} \approx 4.62 ]
Answer: The length of the altitude to the hypotenuse is (\boxed{\dfrac{60}{13}}) (or approximately 4.62).
(\boxed{4.62}) (rounded to two decimal places) or (\boxed{\dfrac{60}{13}}) (exact value).
Since the problem might expect a numerical approximation, the final answer is:
(\boxed{4.62})
(免責聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權利和法律責任歸材料提供方所有和承擔。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構成任何購買、投資等建議,據(jù)此操作者風險自擔。) 本文為轉載內(nèi)容,授權事宜請聯(lián)系原著作權人,如有侵權,請聯(lián)系本網(wǎng)進行刪除。