To solve the problem of finding the smallest number that satisfies the given conditions, we can follow these steps:
The number leaves a remainder of 2 when divided by both 3 and 7. Thus, the number minus 2 must be divisible by the least common multiple (LCM) of 3 and 7.
LCM(3,7)=21, so the number can be written as:
N = 21k + 2 (where k is a non-negative integer).
The number leaves a remainder of 3 when divided by 5. Substitute N=21k+2 into this condition:
21k + 2 ≡ 3 mod 5
Simplify 21 mod5: 21=4×5+1 → 21≡1 mod5.
Thus:
1×k +2 ≡3 mod5 → k+2=3 mod5 → k≡1 mod5.
So k=5m+1 (where m is a non-negative integer).
Substitute k=5m+1 back into N=21k+2:
N=21(5m+1)+2=105m+23.
The smallest value occurs when m=0: N=23.
Answer: 23
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。