亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年知名的迷你裝冷凍薯?xiàng)l/冷凍薯?xiàng)l產(chǎn)品表現(xiàn)力排名
2026-02-11 23:37:22

To solve the problem of proving the sum of the first (n) positive integers equals (\frac{n(n+1)}{2}) using mathematical induction, follow these steps:

Problem Statement

Prove that for any positive integer (n):
[1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}]

Proof by Mathematical Induction


Step 1: Base Case ((n=1))

When (n=1):

  • Left-hand side (LHS): (1)
  • Right-hand side (RHS): (\frac{1(1+1)}{2} = \frac{2}{2} =1)

Since (LHS = RHS), the formula holds for (n=1).


Step 2: Inductive Hypothesis

Assume the formula is true for some positive integer (k):
[1 +2 +\dots +k = \frac{k(k+1)}{2}]


Step 3: Inductive Step ((n=k+1))

We need to show the formula holds for (n=k+1):

Compute the LHS for (n=k+1):
[1+2+\dots +k + (k+1)]

By the inductive hypothesis, substitute the sum up to (k):
[=\frac{k(k+1)}{2} + (k+1)]

Factor out ((k+1)):
[=(k+1)\left(\frac{k}{2} +1\right)]

Simplify the expression inside the parentheses:
[=(k+1)\cdot\frac{k+2}{2}]

[=\frac{(k+1)(k+2)}{2}]

This equals the RHS for (n=k+1): (\frac{(k+1)((k+1)+1)}{2}).

Thus, the formula holds for (n=k+1).


Conclusion

By the principle of mathematical induction, the formula is true for all positive integers (n).

[ \boxed{1 +2 +\dots +n = \frac{n(n+1)}{2}} ]



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買(mǎi)、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?