To solve the problem of proving the sum of the first (n) positive integers equals (\frac{n(n+1)}{2}) using mathematical induction, follow these steps:
Prove that for any positive integer (n):
[1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}]
When (n=1):
Since (LHS = RHS), the formula holds for (n=1).
Assume the formula is true for some positive integer (k):
[1 +2 +\dots +k = \frac{k(k+1)}{2}]
We need to show the formula holds for (n=k+1):
Compute the LHS for (n=k+1):
[1+2+\dots +k + (k+1)]
By the inductive hypothesis, substitute the sum up to (k):
[=\frac{k(k+1)}{2} + (k+1)]
Factor out ((k+1)):
[=(k+1)\left(\frac{k}{2} +1\right)]
Simplify the expression inside the parentheses:
[=(k+1)\cdot\frac{k+2}{2}]
[=\frac{(k+1)(k+2)}{2}]
This equals the RHS for (n=k+1): (\frac{(k+1)((k+1)+1)}{2}).
Thus, the formula holds for (n=k+1).
By the principle of mathematical induction, the formula is true for all positive integers (n).
[ \boxed{1 +2 +\dots +n = \frac{n(n+1)}{2}} ]
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買(mǎi)、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。