亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年比較好的飛機空調(diào)車通風(fēng)軟管/變徑通風(fēng)軟管暢銷廠家采購指南如何選
2026-02-12 04:53:43

To solve the problem of finding the sum of squares of the lengths of all sides and diagonals of a regular hexagon inscribed in a unit circle, follow these steps:

Step 1: Identify the types of segments

A regular hexagon has 6 vertices on the unit circle. The segments between vertices are:

  • Adjacent sides: Distance between vertices with a gap of 1 (e.g., 0-1).
  • Diagonals with gap of 2: Distance between vertices with a gap of 2 (e.g., 0-2).
  • Diagonals with gap of 3: Diameters (e.g., 0-3).

Step 2: Calculate square of distances

For the unit circle:

  • Adjacent sides: Square of distance = $1^2 = 1$ (since distance = $2\sin(\pi/6)=1$).
  • Gap of 2: Square of distance = $(\sqrt{3})^2 = 3$ (distance = $2\sin(\pi/3)=\sqrt{3}$).
  • Gap of 3: Square of distance = $2^2 = 4$ (distance = 2, diameter).

Step 3: Count each segment type

  • Adjacent sides: 6 segments.
  • Gap of 2: 6 segments (each vertex contributes one).
  • Gap of 3: 3 segments (diameters).

Step 4: Sum the squares

Total sum = $(6 \times 1) + (6 \times 3) + (3 \times 4) = 6 + 18 + 12 = 36$.

Answer: $\boxed{36}$



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。

點擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?