To solve the problem of finding the sum of squares of the lengths of all sides and diagonals of a regular hexagon inscribed in a unit circle, follow these steps:
Step 1: Identify the types of segments
A regular hexagon has 6 vertices on the unit circle. The segments between vertices are:
- Adjacent sides: Distance between vertices with a gap of 1 (e.g., 0-1).
- Diagonals with gap of 2: Distance between vertices with a gap of 2 (e.g., 0-2).
- Diagonals with gap of 3: Diameters (e.g., 0-3).
Step 2: Calculate square of distances
For the unit circle:
- Adjacent sides: Square of distance = $1^2 = 1$ (since distance = $2\sin(\pi/6)=1$).
- Gap of 2: Square of distance = $(\sqrt{3})^2 = 3$ (distance = $2\sin(\pi/3)=\sqrt{3}$).
- Gap of 3: Square of distance = $2^2 = 4$ (distance = 2, diameter).
Step 3: Count each segment type
- Adjacent sides: 6 segments.
- Gap of 2: 6 segments (each vertex contributes one).
- Gap of 3: 3 segments (diameters).
Step 4: Sum the squares
Total sum = $(6 \times 1) + (6 \times 3) + (3 \times 4) = 6 + 18 + 12 = 36$.
Answer: $\boxed{36}$
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。