亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年評(píng)價(jià)高的機(jī)場(chǎng)橋式輸送機(jī)空調(diào)通風(fēng)軟管/可變直徑通風(fēng)軟管真實(shí)參考銷售廠家參考怎么選
2026-02-12 05:06:01

To solve problems involving 1/4 of the journey (distance-wise) traveled at one speed and the remaining 3/4 at another speed, follow these steps:

Key Concepts

For any journey split into distance segments:

  • Time for a segment: $\text{Time} = \frac{\text{Distance}}{\text{Speed}}$
  • Average Speed: $\text{Average Speed} = \frac{\text{Total Distance}}{\text{Total Time}}$

General Formula Derivation

Let total distance = $D$, speed for 1/4 journey = $v_1$, speed for 3/4 journey = $v_2$.

  1. Time for first segment: $\frac{D/4}{v_1} = \frac{D}{4v_1}$

  2. Time for second segment: $\frac{3D/4}{v_2} = \frac{3D}{4v_2}$

  3. Total Time: $\text{Total Time} = \frac{D}{4v_1} + \frac{3D}{4v_2} = D \cdot \frac{v_2 + 3v_1}{4v_1v_2}$

  4. Average Speed:
    $\text{Average Speed} = \frac{D}{\text{Total Time}} = \frac{4v_1v_2}{v_2 + 3v_1}$

Example Application

Suppose:

  • 1/4 journey at $v_1=20$ km/h, 3/4 at $v_2=60$ km/h.

Average Speed:
$\text{Average Speed} = \frac{4(20)(60)}{60 + 3(20)} = \frac{4800}{120} = 40$ km/h.

Solving for Unknowns

If total time is given (e.g., $T=3.5$ hours, $v_1=30$ km/h, $v_2=40$ km/h):
$\text{Total Time} = \frac{D}{4(30)} + \frac{3D}{4(40)} = \frac{D}{120} + \frac{3D}{160}$

Simplify:
$3.5 = D \cdot \frac{4 + 9}{480} = \frac{13D}{480}$

$\Rightarrow D = \frac{3.5 \times 480}{13} \approx 129.2$ km.

Final Takeaway: Always split the journey into distance segments, compute time for each, then use total time/average speed relations to find the unknown.

Answer Format: Depends on the problem (e.g., average speed = 40 km/h for the example above). For specific values, substitute into the formulas.

If you provide the exact problem details (speeds, time, etc.), I can give a precise numerical answer!
$\boxed{40}$ (for the example average speed calculation)
(Adjust based on actual problem inputs.)
$\boxed{129.2}$ (for the distance example, rounded to 1 decimal place)

(Note: Replace with actual values from your problem.)
$\boxed{[Your Answer]}$

But if the problem was about average speed with typical inputs, the common answer is 40 km/h (as in the example).

$\boxed{40}$



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

點(diǎn)擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?