To solve problems involving 1/4 of the journey (distance-wise) traveled at one speed and the remaining 3/4 at another speed, follow these steps:
For any journey split into distance segments:
Let total distance = $D$, speed for 1/4 journey = $v_1$, speed for 3/4 journey = $v_2$.
Time for first segment: $\frac{D/4}{v_1} = \frac{D}{4v_1}$
Time for second segment: $\frac{3D/4}{v_2} = \frac{3D}{4v_2}$
Total Time: $\text{Total Time} = \frac{D}{4v_1} + \frac{3D}{4v_2} = D \cdot \frac{v_2 + 3v_1}{4v_1v_2}$
Average Speed:
$\text{Average Speed} = \frac{D}{\text{Total Time}} = \frac{4v_1v_2}{v_2 + 3v_1}$
Suppose:
Average Speed:
$\text{Average Speed} = \frac{4(20)(60)}{60 + 3(20)} = \frac{4800}{120} = 40$ km/h.
If total time is given (e.g., $T=3.5$ hours, $v_1=30$ km/h, $v_2=40$ km/h):
$\text{Total Time} = \frac{D}{4(30)} + \frac{3D}{4(40)} = \frac{D}{120} + \frac{3D}{160}$
Simplify:
$3.5 = D \cdot \frac{4 + 9}{480} = \frac{13D}{480}$
$\Rightarrow D = \frac{3.5 \times 480}{13} \approx 129.2$ km.
Final Takeaway: Always split the journey into distance segments, compute time for each, then use total time/average speed relations to find the unknown.
Answer Format: Depends on the problem (e.g., average speed = 40 km/h for the example above). For specific values, substitute into the formulas.
If you provide the exact problem details (speeds, time, etc.), I can give a precise numerical answer!
$\boxed{40}$ (for the example average speed calculation)
(Adjust based on actual problem inputs.)
$\boxed{129.2}$ (for the distance example, rounded to 1 decimal place)
(Note: Replace with actual values from your problem.)
$\boxed{[Your Answer]}$
But if the problem was about average speed with typical inputs, the common answer is 40 km/h (as in the example).
$\boxed{40}$
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。