亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年知名的單向微型閥/節(jié)流微型閥高口碑廠家推薦(評價高)
2026-02-03 12:15:09

To solve the problem of finding the number of distinct ways to paint a cube with 3 colors (considering rotations as identical), we use Burnside's Lemma, which states the number of distinct colorings equals the average number of colorings fixed by each rotational symmetry of the cube.

Step 1: List Rotational Symmetries of Cube

There are 24 total rotational symmetries, grouped into 5 types:

1. Identity Rotation (1 element)

Fixes all colorings: $3^6 = 729$.

2. 90°/270° face-axis rotations (6 elements)

Each rotation cycles 4 lateral faces, so fixed colorings: $3^3 = 27$ (top, bottom, and 4 lateral faces same). Total contribution: $6×27 = 162$.

3. 180° face-axis rotations (3 elements)

Splits lateral faces into 2 pairs, fixed colorings: $3^4 = 81$. Total contribution: $3×81 = 243$.

4. 180° edge-axis rotations (6 elements)

Splits faces into 3 pairs, fixed colorings: $3^3 = 27$. Total contribution: $6×27 = 162$.

5. 120°/240° vertex-axis rotations (8 elements)

Cycles 3 faces each, fixed colorings: $3^2 =9$. Total contribution: $8×9 =72$.

Step 2: Calculate Average Fixed Colorings

Sum of fixed colorings: $729 +162 +243 +162 +72 =1368$.
Divide by 24: $\frac{1368}{24}=57$.

Answer: $\boxed{57}$



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。

點擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?