To solve the problem of finding the number of distinct ways to paint a cube with 3 colors (considering rotations as identical), we use Burnside's Lemma, which states the number of distinct colorings equals the average number of colorings fixed by each rotational symmetry of the cube.
There are 24 total rotational symmetries, grouped into 5 types:
Fixes all colorings: $3^6 = 729$.
Each rotation cycles 4 lateral faces, so fixed colorings: $3^3 = 27$ (top, bottom, and 4 lateral faces same). Total contribution: $6×27 = 162$.
Splits lateral faces into 2 pairs, fixed colorings: $3^4 = 81$. Total contribution: $3×81 = 243$.
Splits faces into 3 pairs, fixed colorings: $3^3 = 27$. Total contribution: $6×27 = 162$.
Cycles 3 faces each, fixed colorings: $3^2 =9$. Total contribution: $8×9 =72$.
Sum of fixed colorings: $729 +162 +243 +162 +72 =1368$.
Divide by 24: $\frac{1368}{24}=57$.
Answer: $\boxed{57}$
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。