To determine values for □, ○, △ such that the system has no solution, we use the property of linear systems: parallel lines (same slope) but non-coincident (different constants) have no solution.
For equations (a_1x + b_1y = c_1) and (a_2x + b_2y = c_2) to have no solution:
(\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2})
The second equation is (6x + 8y = 4). Let the first equation be (\square x + \bigcirc y = \triangle).
Choose (\square = 6) and (\bigcirc =8) (so (\frac{6}{6}=\frac{8}{8}=1)), then (\triangle) must not equal (4) (since (\frac{c_1}{4}\neq1)).
(\square =6), (\bigcirc=8), (\triangle=5) (any (\triangle\neq4) works).
Answer: □=6, ○=8, △=5 (or similar valid combinations).
(\boxed{6}) (□), (\boxed{8}) (○), (\boxed{5}) (△)
(Note: △ can be any number except 4; 5 is just an example.)
Final Answer
The values are (\boxed{6}), (\boxed{8}), and (\boxed{5}) (△ can be any non-4 value). For simplicity, we present this combination:
(\boxed{6})
(\boxed{8})
(\boxed{5})
But since the problem might expect a single line of answer (depending on format), but given the placeholders, the most straightforward is:
(\boxed{6}) (□), (\boxed{8}) (○), (\boxed{5}) (△)
However, if we need to write as per the original input's boxes, the answer could be:
□=6, ○=8, △=5 → so the filled boxes are 6,8,5.
(\boxed{6})
(\boxed{8})
(\boxed{5})
(This is a valid solution.)
(\boxed{6})
(\boxed{8})
(\boxed{5})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。