To solve the problem of finding the number of ways to color a sequence of 5 objects using 6 colors (with no two adjacent objects having the same color), we can break down the reasoning as follows:
There are 6 colors available, so we have 6 choices.
For each subsequent object (2nd to 5th), we cannot use the color of the immediately previous object. Thus, for each of these positions, there are 5 choices (since we exclude the color of the adjacent left object).
The number of choices for positions 2-5 is (5 \times 5 \times 5 \times 5 = 5^4).
Multiply the choices for all positions:
[6 \times 5^4 = 6 \times 625 = 18750]
Answer: (\boxed{18750})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。