To solve the problem of finding the coordinates of the other endpoint of a line segment given one endpoint and the angle of the segment, follow these steps:
A line segment with angle $\alpha$ (measured from the positive x-axis) and length $L$ has a displacement vector from the known point to the unknown point given by:
$$(\Delta x, \Delta y) = (L \cdot \cos\alpha, L \cdot \sin\alpha)$$
Let the known endpoint be $P(x_0, y_0)$, the unknown endpoint be $Q(x, y)$, the angle of the segment be $\alpha$, and the length be $L$. Then:
$$x = x_0 + L \cdot \cos\alpha$$
$$y = y_0 + L \cdot \sin\alpha$$
Suppose:
Calculations:
$\cos60^\circ = 0.5$, $\sin60^\circ = \frac{\sqrt{3}}{2} \approx 0.866$
$$x = 1 + 4 \cdot 0.5 = 3$$
$$y = 2 + 4 \cdot \frac{\sqrt{3}}{2} = 2 + 2\sqrt{3} \approx 5.464$$
Unknown endpoint: $(3, 2+2\sqrt{3})$
Answer:
For general values, use the formula above. For specific inputs (from the missing image), substitute the known values into the formula to get the exact coordinates.
If you provide the exact values (known point, angle, length), we can compute the numerical result directly.
$\boxed{(x_0 + L\cos\alpha, y_0 + L\sin\alpha)}$
(Note: Replace with numerical values once the image details are available.)
For example, if the known point is $(0,0)$, $\alpha=30^\circ$, $L=2$, the answer is $\boxed{(√3,1)}$.
Adjust based on your specific problem's parameters!
$\boxed{(x_0 + L\cos\alpha, y_0 + L\sin\alpha)}$
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。