To solve the problem of finding the number of rectangles in a grid, we use the following approach:
A rectangle is formed by choosing 2 distinct horizontal lines and 2 distinct vertical lines from the grid. For a grid with (a) rows and (b) columns of squares:
The number of rectangles is the product of combinations of choosing 2 lines from each set:
[ \text{Number of rectangles} = \binom{a+1}{2} \times \binom{b+1}{2} = \left(\frac{a(a+1)}{2}\right) \times \left(\frac{b(b+1)}{2}\right) ]
Given common problem contexts (since the image is unavailable), we assume the grid is 4 rows and 5 columns of squares (a frequent problem setup).
Calculation:
[ \left(\frac{4×5}{2}\right) × \left(\frac{5×6}{2}\right) = (10) × (15) = 150 ]
Answer: (\boxed{150})
(Note: If the grid size differs, adjust using the formula above. This answer is based on a common problem scenario.)
(\boxed{150})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。