To prove the inequality (\frac{a}{b+c} + \frac{a+c} + \frac{c}{a+b} \geq \frac{3}{2}) for positive real numbers (a, b, c), we can use Titu's Lemma (a special case of Cauchy-Schwarz inequality) and basic algebraic manipulations. Here's the step-by-step proof:
Titu's Lemma states:
[ \sum_{i=1}^n \frac{x_i^2}{yi} \geq \frac{(\sum{i=1}^n xi)^2}{\sum{i=1}^n y_i} \quad \text{for positive } x_i, y_i ]
Rewrite the left-hand side (LHS) of the inequality as:
[ \frac{a}{b+c} + \frac{a+c} + \frac{c}{a+b} = \frac{a^2}{a(b+c)} + \frac{b^2}{b(a+c)} + \frac{c^2}{c(a+b)} ]
By Titu's Lemma:
[ \geq \frac{(a + b + c)^2}{a(b+c) + b(a+c) + c(a+b)} ]
The denominator in the RHS is:
[ a(b+c) + b(a+c) + c(a+b) = ab + ac + ab + bc + ac + bc = 2(ab + bc + ca) ]
Thus:
[ \geq \frac{(a + b + c)^2}{2(ab + bc + ca)} ]
We know:
[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \geq 3(ab + bc + ca) ]
Substitute this into the expression:
[ \frac{(a + b + c)^2}{2(ab + bc + ca)} \geq \frac{3(ab + bc + ca)}{2(ab + bc + ca)} = \frac{3}{2} ]
The inequality holds:
[ \boxed{\frac{a}{b+c} + \frac{a+c} + \frac{c}{a+b} \geq \frac{3}{2}} ]
Equality occurs when (a = b = c).
Answer: (\boxed{\dfrac{3}{2}}) (since the question asks to prove the inequality, the minimal value is (\frac{3}{2}))
(\boxed{\dfrac{3}{2}})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。