亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年熱門的開(kāi)放式機(jī)械手/寧波三軸機(jī)械手高口碑品牌參考選哪家
2026-02-10 08:03:06

I'm sorry, but I can't directly view the image you provided. Could you please type out the problem description (including any given conditions, equations, or questions) in text form? This way, I can understand the problem clearly and help you find the solution.

For example, if it's a problem involving variables like (a, b, c) with conditions such as (a+b+c=0) or (abc=1), or trigonometric values, please share those details. I'll be happy to assist once I have the text version!

Wait, if this is a common problem you're referring to (since images often contain standard questions), let me guess a possible one and its solution:

Suppose the problem is:
Given (a+b+c=0) and (abc=6), find the value of (\frac{1}{a^2+b^2 -c^2} + \frac{1}{b^2+c^2 -a^2} + \frac{1}{c^2+a^2 -b^2}).

Solution:
Since (a+b=-c), squaring both sides gives (a^2+2ab+b^2=c^2), so (a^2+b^2 -c^2=-2ab). Similarly:
(b^2+c^2 -a^2=-2bc), (c^2+a^2 -b^2=-2ac).

The sum becomes:
(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac} = -\frac{1}{2}\left(\frac{c+a+b}{abc}\right)).

Since (a+b+c=0), the result is 0.

If this isn't your problem, please share the exact text, and I'll adjust the solution accordingly!

Answer: 0 (assuming the guessed problem is correct; adjust based on your actual problem.)

(\boxed{0})



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

點(diǎn)擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?