亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年靠譜的天津壓片機(jī)/天津加熱壓片機(jī)源頭廠家
2026-02-11 01:46:40

To solve this problem, we need to maximize the sum of the elements in an n x m grid after performing any number of row and column flips. The key insight is to use row flips to make the first element of each row positive, then use column flips to maximize the sum of each subsequent column.

Approach

  1. Row Flips: For each row, flip the row if the first element is negative. This ensures the first element of each row is positive, maximizing the sum of the first column (since all elements are positive).
  2. Column Flips: For each column starting from the second column, if the sum of the elements in the column is negative, flip the column to make the sum positive (since flipping a column with a negative sum will turn it into a positive sum, which increases the total sum). Instead of explicitly flipping the column, we can simply add the absolute value of the column sum to the total sum (as flipping the column is equivalent to taking the absolute value of the sum).

Solution Code

n, m = map(int, input().split())
grid = []
for _ in range(n):
    row = list(map(int, input().split()))
    if row[0] < 0:
        row = [-x for x in row]
    grid.append(row)

total_sum = sum(row[0] for row in grid)

for j in range(1, m):
    col_sum = sum(row[j] for row in grid)
    total_sum += abs(col_sum)

print(total_sum)

Explanation

  1. Row Flips: By flipping rows where the first element is negative, we ensure the first column's elements are all positive, so their sum is the maximum possible (sum of absolute values of the original first elements).
  2. Column Flips: For each subsequent column, the sum of elements can be maximized by taking the absolute value of the sum (since flipping the column if the sum is negative will give a positive sum). This step ensures each column contributes the maximum possible value to the total sum.

This approach efficiently computes the maximum sum with a time complexity of O(n*m), which is optimal for the problem constraints. The solution is both correct and easy to implement.



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

點(diǎn)擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?