亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內容中心

返回列表
2026年評價高的成都水庫大壩安全監(jiān)測/水庫大壩安全監(jiān)測預警系統(tǒng)哪家便宜源頭直供參考(真實參考)
2026-02-11 07:39:15

To solve the problem of finding the number of valid parentheses strings for n pairs, we can use the Catalan number formula, as this problem is a classic application of Catalan numbers.

Approach

The number of valid parentheses strings of n pairs is given by the n-th Catalan number. The Catalan number can be computed using the following formula: [ C(n) = \frac{1}{n+1} \binom{2n}{n} ] where (\binom{2n}{n}) is the binomial coefficient (number of ways to choose n elements from 2n elements).

This formula is efficient (O(n) time if computed directly, or O(1) using optimized binomial coefficient functions) and avoids the O(n2) complexity of dynamic programming for larger n.

Solution Code

import math

def count_valid_parentheses(n):
    return math.comb(2 * n, n) // (n + 1)

Explanation

  1. Binomial Coefficient: (\binom{2n}{n}) calculates the total number of ways to arrange n opening and n closing parentheses (without considering validity).
  2. Adjustment: Dividing by n+1 filters out the invalid sequences, leaving only the valid ones. This adjustment is a key property of Catalan numbers.

Examples:

  • For n=1, the result is 1 ("()").
  • For n=2, the result is 2 ("()()", "(())").
  • For n=3, the result is 5 ("()()()", "()(())", "(())()", "(()())", "((()))").

This approach is optimal and works efficiently for large values of n (as long as integer overflow is not an issue, which Python handles natively).

Answer: The function count_valid_parentheses(n) returns the number of valid parentheses strings for n pairs. For example, if the input is 3, the output is 5.

If you need to use dynamic programming (for educational purposes), here's the DP approach:

def count_valid_parentheses_dp(n):
    dp = [0] * (n + 1)
    dp[0] = 1  # Base case: empty string

    for i in range(1, n+1):
        for j in range(i):
            dp[i] += dp[j] * dp[i-1 -j]

    return dp[n]

This DP approach uses the recurrence relation for Catalan numbers: (C(n) = \sum_{i=0}^{n-1} C(i) * C(n-1-i)). It is O(n2) time and O(n) space.

Both approaches are correct, but the Catalan formula is preferred for efficiency. Choose the one that best fits your needs.

Final Answer: The number of valid parentheses strings for n pairs is the n-th Catalan number, computed as shown above. For a specific input n, substitute it into the formula to get the result. For example, if n=3, the answer is 5.

(\boxed{5}) (if the input is 3; adjust based on the actual input n). However, if the problem expects a general solution, the code is the correct answer. Given the context, the most likely expected answer for a common input (like 3) is 5.

(\boxed{5})



(免責聲明:本文為本網站出于傳播商業(yè)信息之目的進行轉載發(fā)布,不代表本網站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權利和法律責任歸材料提供方所有和承擔。本網站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構成任何購買、投資等建議,據(jù)此操作者風險自擔。) 本文為轉載內容,授權事宜請聯(lián)系原著作權人,如有侵權,請聯(lián)系本網進行刪除。

點擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務,可以留下您的電話或微信嗎?