亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年質(zhì)量好的成都活動房商鋪/成都活動房租售選哪家高口碑品牌參考
2026-02-11 08:17:48

To solve the problem of finding the number of distinct ways to paint the three edges of a triangle with three colors (adjacent edges different, rotations same, reflections different), follow these steps:

Step 1: Understand Constraints

  • Adjacent edges cannot share the same color.
  • Rotations are equivalent (so we can fix one edge to eliminate rotation).
  • Reflections are distinct (so mirror images count as separate).

Step 2: Count Valid Colorings Without Equivalence

For a triangle (cycle of 3 edges):

  • First edge: 3 choices.
  • Second edge: 2 choices (different from first).
  • Third edge: 1 choice (different from first and second, since it’s adjacent to both).

Total: $3×2×1=6$ colorings, all permutations of the three colors.

Step 3: Group by Rotations

Rotations collapse permutations into two equivalence classes:

  • Clockwise permutations: {RGB, GBR, BRG}
  • Counterclockwise permutations: {RBG, BGR, GRB}

Step 4: Reflections Are Distinct

These two classes are reflections of each other, so they count as separate.

Answer: 2

$\boxed{2}$



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。

點擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?