To solve the problem of finding the area of the intersection of two circles (assuming this is the shaded region, given common problem contexts), here's the step-by-step solution:
Assume two circles of radius (r=5) with centers separated by (d=8). The intersection area is symmetric, so we calculate the segment area of one circle and double it.
Exact Answer: (\boxed{50\arccos\left(\frac{4}{5}\right)-24})
Numerical Approximation: (\approx8.18) (if rounded to two decimals, but exact form is preferred).
(\boxed{50\arccos\left(\frac{4}{5}\right)-24})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。