亚洲精品不卡AV在线播放|国产性爱无码高清视频|国产成人 ,97人人色,国产免费一区二区三区,日本一区二区在线

內(nèi)容中心

返回列表
2026年熱門的成都工地住人集裝箱/成都二手集裝箱源頭直供參考哪家便宜
2026-02-11 08:41:42

To solve the problem of finding the number of non-negative integer solutions ((x,y)) to the equation (2x^2 + y^2 = 2020), we proceed step by step:

Step 1: Analyze parity of (y)

The equation rearranges to (y^2 = 2(1010 - x^2)). Since the right-hand side is even, (y^2) must be even → (y) is even. Let (y=2k) ( (k) non-negative integer). Substitute into the equation:
[2x^2 + (2k)^2 = 2020 \implies x^2 + 2k^2 = 1010]

Step 2: Analyze parity of (x)

(x^2 = 1010 - 2k^2) → even, so (x) is even. Let (x=2m) ( (m) non-negative integer):
[ (2m)^2 + 2k^2 = 1010 \implies 2m^2 + k^2 = 505]

Step 3: Check possible values of (k)

(k^2 = 505 - 2m^2). For (k^2) to be non-negative: (2m^2 \leq 505 \implies m \leq \sqrt{252.5} \approx 15).

Additionally, mod 4 analysis:

  • (505 \mod 4 = 1), (2m^2 \mod 4) is 0 or 2.
  • (k^2 \mod 4) can only be 0 or 1. Thus, (2m^2 \mod 4 = 0) → (m) even.

Check even (m) values (0,2,...,14) and corresponding (k^2):
None of these yield integer (k) (e.g., (m=0) → (k^2=505) not square; (m=2) → (k^2=497) not square, etc.).

Step 4: Verify all possible (y)

All even (y) (0 to 44) are checked, and none give integer (x).

Answer: (\boxed{0})



(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。

點(diǎn)擊呼叫(詳情介紹)
在線客服

在線留言
您好,很高興為您服務(wù),可以留下您的電話或微信嗎?