To solve the problem, we need to find four consecutive integers whose product is 5040 and then identify the smallest one.
First, factorize 5040 into its prime components:
[5040 = 2^4 \times 3^2 \times 5 \times 7]
Notice that 7 is a prime factor. Since 14 (the next multiple of 7) is too large (14×13×12×11 > 5040), 7 must be one of the four consecutive numbers.
Check the sequence including 7:
[7 \times 8 \times 9 \times 10 = 5040]
This product exactly equals 5040.
The four consecutive ages are 7, 8, 9, and 10. The youngest is 7.
Answer: 7.
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。