To solve the problem of finding the number of positive integers ≤1000 divisible by 3, 5, or 7, we use the inclusion-exclusion principle for three sets.
Let:
[
|A| = \left\lfloor \frac{1000}{3} \right\rfloor = 333 \quad (\text{since }3×333=999)
]
[
|B| = \left\lfloor \frac{1000}{5} \right\rfloor = 200 \quad (\text{since }5×200=1000)
]
[
|C| = \left\lfloor \frac{1000}{7} \right\rfloor = 142 \quad (\text{since }7×142=994)
]
Intersections are divisible by the LCM of the two numbers:
[
|A∩B| = \left\lfloor \frac{1000}{15} \right\rfloor = 66 \quad (\text{LCM(3,5)=15; 15×66=990})
]
[
|A∩C| = \left\lfloor \frac{1000}{21} \right\rfloor = 47 \quad (\text{LCM(3,7)=21; 21×47=987})
]
[
|B∩C| = \left\lfloor \frac{1000}{35} \right\rfloor = 28 \quad (\text{LCM(5,7)=35;35×28=980})
]
[
|A∩B∩C| = \left\lfloor \frac{1000}{105} \right\rfloor =9 \quad (\text{LCM(3,5,7)=105;105×9=945})
]
[
|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|
]
[
=333+200+142 -66-47-28 +9 =543
]
Answer: (\boxed{543})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。