To solve this problem, we need to convert a given string of lowercase English letters into a sequence of numbers based on specific rules involving the position of each letter in the alphabet.
s = input().strip()
values = [ord(c) - ord('a') + 1 for c in s]
sum_values = sum(values)
output = [sum_values] + values[1:]
print(' '.join(map(str, output)))
c in the input string, we calculate its value using ord(c) - ord('a') +1. This works because ord('a') gives the ASCII value of 'a', subtracting this from the ASCII value of c gives the 0-based index, and adding 1 converts it to the 1-based position in the alphabet.sum() function.This approach efficiently handles all edge cases (like single-character strings) and aligns with the problem's requirements as inferred from the examples. The solution is optimal with a time complexity of O(n) where n is the length of the input string, as each step involves a linear pass over the string or its values.
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。