To solve the problem of finding the number of positive integers (x \leq 100) not divisible by 2, 3, or 5, we use the inclusion-exclusion principle.
Let:
We need to compute (100 - |A \cup B \cup C|) (total numbers minus those divisible by at least one of 2,3,5).
[|A \cup B \cup C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|]
Calculate each term:
[|A \cup B \cup C| = 50 + 33 + 20 - 16 -10 -6 +3 = 74]
[100 - 74 = 26]
Answer: (\boxed{26})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買(mǎi)、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。