The pattern in the table can be summarized by the formula for the cell at row (i) and column (j) (where rows and columns start from 0):
(f(i,j) = (i+1)(j+1) - 1)
Verification:
Answer: The value at row (i) and column (j) is ((i+1)(j+1)-1).
If we denote rows and columns starting from 1 (let (r=i+1), (c=j+1)), the formula simplifies to (r \times c -1).
(\boxed{(i+1)(j+1)-1}) (or (\boxed{rc -1}) if using 1-based indices for rows (r) and columns (c)).
Assuming the problem expects the 1-based version (common in such tables), the answer is (\boxed{rc -1}). But let's confirm with the given table: for row 2 (1-based r=2) and column3 (1-based c=3), 2*3-1=5 which is exactly cell (1,2) in 0-based (row 1, column2: 5). Yes! So the 1-based formula is (\boxed{rc -1}).
Final Answer: (\boxed{rc -1}) (where (r) is row number and (c) is column number, starting from 1).
Alternatively, if 0-based is needed: (\boxed{(i+1)(j+1)-1}), but (\boxed{rc -1}) is more concise and likely expected.
(\boxed{rc -1})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進行刪除。