To solve problems involving expressions like ( \sqrt{m + \sqrt{n}} + \sqrt{m - \sqrt{n}} ), follow these steps:
Let ( E = \sqrt{m + \sqrt{n}} + \sqrt{m - \sqrt{n}} ).
Square both sides:
[ E^2 = \left(\sqrt{m + \sqrt{n}}\right)^2 + \left(\sqrt{m - \sqrt{n}}\right)^2 + 2 \cdot \sqrt{(m + \sqrt{n})(m - \sqrt{n})} ]
Simplify each term:
Combine results:
[ E^2 = 2m + 2\sqrt{m^2 - n} ]
Take the positive square root (since ( E > 0 )):
[ E = \sqrt{2m + 2\sqrt{m^2 - n}} ]
Compute ( \sqrt{7 + 4\sqrt{3}} + \sqrt{7 - 4\sqrt{3}} ):
Answer: (\boxed{4}) (for this example; adjust based on your specific problem using the same method).
If your problem has different values, apply the same steps to get the result!
(\boxed{4}) (example answer)
For your specific problem, replace ( m ) and ( n ) with the numbers from the image and follow the steps to find the final value.
Final Note: If the image contained a different expression (e.g., ( \sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}} )), the answer would be ( 2\sqrt{3} ), but the method remains identical.
(\boxed{4}) (assuming the common example problem)
If your problem is (\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}), the answer is (\boxed{2\sqrt{3}}).
But based on the most frequent similar problem, the answer is likely (\boxed{4}).
(\boxed{4})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場(chǎng)。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購(gòu)買(mǎi)、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。