To solve the problem (likely the product of sines or cosines as common classic problems), let’s take the example of (\sin10^\circ \sin30^\circ \sin50^\circ \sin70^\circ) (or its equivalent cosine product) and derive the result step-by-step:
First, note:
Thus, the product becomes:
[P = \frac{1}{2} \times \cos20^\circ \cos40^\circ \cos80^\circ]
We use (2\sin A \cos A = \sin2A). Multiply numerator and denominator of the cosine product by (2\sin20^\circ):
[ \cos20^\circ \cos40^\circ \cos80^\circ = \frac{2\sin20^\circ \cos20^\circ \cos40^\circ \cos80^\circ}{2\sin20^\circ} ]
Simplify the numerator:
[ \frac{\sin40^\circ \cos40^\circ \cos80^\circ}{2\sin20^\circ} ]
Multiply numerator/denominator by (2) again:
[ \frac{2\sin40^\circ \cos40^\circ \cos80^\circ}{4\sin20^\circ} = \frac{\sin80^\circ \cos80^\circ}{4\sin20^\circ} ]
Multiply numerator/denominator by (2) once more:
[ \frac{2\sin80^\circ \cos80^\circ}{8\sin20^\circ} = \frac{\sin160^\circ}{8\sin20^\circ} ]
Since (\sin160^\circ = \sin(180^\circ - 20^\circ) = \sin20^\circ):
[ \frac{\sin20^\circ}{8\sin20^\circ} = \frac{1}{8} ]
[ P = \frac{1}{2} \times \frac{1}{8} = \frac{1}{16} ]
Answer: (\boxed{\dfrac{1}{16}})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人,如有侵權(quán),請聯(lián)系本網(wǎng)進(jìn)行刪除。