To solve the problem of finding the difference between the sum of the first 100 even numbers and the sum of the first 100 odd numbers, we can use the following reasoning:
Sum of first (n) even numbers: The first (n) even numbers are (2, 4, 6, ..., 2n). This is an arithmetic sequence with first term (a=2), last term (l=2n), and number of terms (n). The sum is:
[
S_{\text{even}} = \frac{n}{2}(a + l) = \frac{n}{2}(2 + 2n) = n(n + 1)
]
Sum of first (n) odd numbers: The first (n) odd numbers are (1, 3, 5, ..., 2n-1). This is also an arithmetic sequence with first term (a=1), last term (l=2n-1), and number of terms (n). The sum is:
[
S_{\text{odd}} = \frac{n}{2}(1 + (2n-1)) = \frac{n}{2}(2n) = n^2
]
[ \text{Difference} = S{\text{even}} - S{\text{odd}} = n(n + 1) - n^2 = n^2 + n - n^2 = n ]
For (n=100), the difference is (100).
Answer: (\boxed{100})
(免責(zé)聲明:本文為本網(wǎng)站出于傳播商業(yè)信息之目的進(jìn)行轉(zhuǎn)載發(fā)布,不代表本網(wǎng)站的觀點(diǎn)及立場。本文所涉文、圖、音視頻等資料的一切權(quán)利和法律責(zé)任歸材料提供方所有和承擔(dān)。本網(wǎng)站對(duì)此資訊文字、圖片等所有信息的真實(shí)性不作任何保證或承諾,亦不構(gòu)成任何購買、投資等建議,據(jù)此操作者風(fēng)險(xiǎn)自擔(dān)。) 本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請(qǐng)聯(lián)系原著作權(quán)人,如有侵權(quán),請(qǐng)聯(lián)系本網(wǎng)進(jìn)行刪除。